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Abstract

Sandwich beams consisting of a carbon foam core and graphite/bismaleimide face

sheets were constructed and tested. Nine specimens were fabricated, using three distinct

cross-ply symmetric face sheet layups with a constant core thickness. Four-point bend

testing, controlled by a constant rate of midspan vertical displacement, was used to load

the specimens to failure. Strains were recorded at midspan on the top and bottom faces,

and vertical displacement was measured at midspan. Failure modes were observed for the

beams and compared to results from a layerwise finite element method. The finite element

code was originally written to dynamically calculate stresses in a sandwich plate dropped

on an elastic foundation, and was enhanced to handle concentrated static forces. In ad-

dition to in-plane strains and stresses, the finite element method takes into account both

normal and shear strains and stresses through the thickness of the beam. The stress results

were used to evaluate failure criteria for both the composite face sheets and foam core.

Displacements and strains from the experiment were compared to analytical sandwich

beam theory, and displacements and failure loads were compared to the finite element so-

lution. A phenomenological failure criterion was developed that compares favorably with

experimental failure data. The finite element solution gives failure within an average of

7.58% of experiment, and a stiffness within an average of 11.16%. The analytical sand-

wich beam theory predicts stiffness within 4.83% of experiment, and strain within 5.27%

of experiment. A primary goal of the research was to evaluate the ability of the layerwise

finite element method, a method having potential use in a structural health monitoring sys-

tem, to predict failure onset and location in a structure. Another goal was to determine if

the structures responded in such a way that core failure in shear was reinforced by the face

sheets. This research shows that the finite element theory has the ability to predict fail-

ure onset and location in a sandwich structure, and that the face sheet layups with higher

stiffness delay the onset of shear failure in the core.

x



EXPERIMENTAL AND COMPUTATIONAL FAILURE ANALYSIS OF

GRAPHITE/BISMALEIMIDE LAMINATED COMPOSITE AND

CARBON FOAM IN SANDWICH CONSTRUCTION

I. Introduction

Sandwich construction in its simplest form consists of sheets of material adhered

to either side of a layer of core material. Usually, the core is much thicker and much less

dense than the face sheets. This allows the structure to have a greater bending stiffness than

a single solid plate of face sheet material having the same weight, the increased stiffness

being the result of the face sheets being fixed at a greater distance from the centroidal

axis. Sandwich structures of today owe their popularity in large part to their high stiffness-

weight and strength-weight ratios.

Sandwich construction was in existence before the advent of modern composite

materials. Its earliest use is believed to have been by Sir William Fairbairn in tubular

bridge design and construction in Great Britain, and appears in the literature as early

as 1849 (as reported in [2]). The idea of sandwich construction had possibly occurred

to independent engineers before this time without having been reported or used in the

construction of a load-bearing structure.

Two prominent examples of sandwich construction can be found in aviation history.

The first extends back to the World War II (WWII) era. The deHavilland aircraft company

produced the DH-98 MOSQUITO, flown by Great Britain’s Royal Air Force during WWII

(Figure 1.1). Its primary structure consisted of balsa core material between exterior and
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Figure 1.1 deHavilland DH-98 MOSQUITO [29]

interior plywood sheets. The aircraft entered production in 1941, and production was

continued well beyond the war [29].

The second notable example of sandwich construction in aviation history is found

in the Apollo space program of the United States’ National Aeronautics and Space Ad-

ministration (NASA). Two concentric sandwich shells consisting of thin steel sheets sur-

rounding cores of lightweight stainless steel honeycomb (exterior shell) and aluminum

honeycomb (interior shell) were designed by North American Rockwell Corporation for

the construction of the Apollo command module (Figure 1.2). It was critical for the com-

mand module to be as lightweight as possible to maximize payload capacity, yet strong

enough to withstand reentry into the atmosphere. The outer shell of the vehicle was cov-

ered with a phenolic epoxy resin to withstand reentry temperatures of over 1600 ◦C [29].

In a sandwich structure subjected to a bending load, the thin face sheets usually

carry the majority of compressive and tensile stresses. The thick core acts to keep the face

sheets parallel to each other and separated from each other by their original distance from

the centroidal axis by providing adequate stiffness in the thickness direction of the beam.

The core also prevents the face sheets from sliding over each other by providing shear

stiffness. Thus, in predicting and analyzing failure of sandwich structures, one must be

concerned with the tensile and compressive strengths of the face sheets and the through-
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Figure 1.2 North American Rockwell Apollo 15 Command Module

thickness and shear strengths of the core, since the failure will largely depend on those

properties.

Carbon foam is an emerging ultralightweight material being used in sandwich beam

construction because of its low density and high stiffness and strength. Several appli-

cations of carbon foam can be found in all fields of engineering. The advantages of an

ultralightweight material are evident when considering the field of advanced aerospace

vehicles, where using materials with high stiffness-weight ratios can reduce the weight of

the aircraft and allow it to carry more fuel and/or payload. Its efficient thermal manage-

ment characteristics make it desirable for other structural applications as well, including

high-density electronics, hybrid diesel-electric vehicles, rocket combustors, and commu-
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Figure 1.3 Graphite/BMI and Carbon Foam Sandwich Beam

nication satellites [25]. Future applications that take advantage of its high stiffness and

strength are currently being researched.

When analyzing load-bearing structures, it is important to be able to detect when

their constituent materials are damaged and their high strengths and stiffnesses are de-

graded. Structural health monitoring, a field of emerging importance, has generated De-

partment of Defense interest in relation to advanced aircraft structures. The goal of a

structural health monitoring system is to be able to predict or detect the onset and location

of failure in a given structure, preferably in real time, based on known information about

the loading conditions and material properties of the structure. This becomes important in

composite sandwich structures because the failure may be difficult or impossible to detect

using traditional nondestructive inspection techniques.

Structural failure degrades the ability of a structure to respond under loading. This

thesis analyzes structural response using three different methods: an analytical approach

using beam theory, a computational approach using a finite element solution, and a phys-

ical experiment conducted on nine specimens. The analytical method [2] uses an appli-

cation of ordinary beam theory to consider the effect of sublaminates (face sheets and

core) of different materials on bending stiffness of the sandwich structure. The sandwich

beam theory considers narrow beams consisting of different isotropic materials for the

face sheet and for the core, and was applied to the analysis of the composite face sheets.

The results of this theory were compared with the experimental data for load-displacement

and load-strain responses.

Failure was studied using both computational and experimental methods. The com-

putational approach to failure analysis, developed by Perel and Palazotto in [17] and [19],
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uses a finite element method that considers the effect of through-thickness strain in ad-

dition to the in-plane strains, while requiring relatively few degrees of freedom in com-

parison to a full three-dimensional model and solution. Stresses are obtained through

constitutive relations and by solving the equations of motion for the sandwich structure

for three zones through its thickness: upper face sheet, core, and lower face sheet. The

stresses are then used to compute failure indices to predict failure initiation and mode in

each sublaminate.

To physically characterize failure, an experiment was performed with sandwich

structures consisting of a carbon foam core between two face sheets of a laminated com-

posite. The carbon foam was obtained from Touchstone Research Laboratory, and its ma-

terial properties were determined by experiment [24]. The face sheets consist of graphite

fibers embedded in bismaleimide (BMI) matrix in the form of preimpregnated rolled tape.

The cured composite laminate is stated to have material properties equivalent to those of

Cytec CYCOM IM7/5250-4 [5]. Four-point bend tests were performed with each sand-

wich structure. The specimens were loaded such that the load resulted in a constant rate

of midspan displacement, and the loading was carried out until structural failure. A time

history of load, top and bottom face sheet strain, and midspan displacement was recorded,

and the failure mode for each specimen was noted.

This presentation concludes with the comparison and discussion of the analytical,

computational, and experimental results, followed by a summary of findings from this

research.
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II. Theoretical Foundation

2.1 Theory of Linear Elasticity: Orthotropic and Transversely Isotropic Materials

In order to consider the structural response and failure of the sandwich beams, ap-

propriate theories must be applied to the analysis. This chapter lays the theoretical ground-

work for the sandwich beam analysis carried out in this thesis. Composite laminate theory,

sandwich beam theory, finite element theory, and failure theory are discussed.

Herakovich [10] and Saada [23] give a full treatment of the three-dimensional con-

stitutive relations for a linear elastic material and the simplifications obtained by the trans-

verse isotropy assumption. A summary of this treatment is presented here for complete-

ness, beginning with the statement that the full fourth-order compliance tensor from the

generalized Hooke’s law εkl = Sklmnσmn [23] can be simplified by making assumptions about

the independence of direction on effective material properties.

2.1.1 Orthotropic Materials. A material that is symmetric about three orthog-

onal planes is an orthotropic material. A unidirectional composite lamina can be consid-

ered to be orthotropic because it exhibits material symmetry through its thickness, along

its fibers, and transverse to its fibers.

The constitutive relations from elasticity theory are presented in Equations 2.1a–

2.1f in terms of engineering constants. This is useful because engineering constants are

quantities that can be measured in the laboratory. These constants E, G, and ν are the
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elasticity modulus (Young’s modulus), shear modulus, and Poisson’s ratio, respectively.

ε1 =
1

E1
σ1 −

ν21

E2
σ2 −

ν31

E3
σ3 (2.1a)

ε2 = −ν12

E1
σ1 +

1
E2

σ2 −
ν32

E3
σ3 (2.1b)

ε3 = −ν13

E1
σ1 −

ν23

E2
σ2 +

1
E3

σ3 (2.1c)

ε4 =
1

G23
σ23 (2.1d)

ε5 =
1

G13
σ13 (2.1e)

ε6 =
1

G12
σ12. (2.1f)

Here the usual elasticity nomenclature for stress and strain is replaced with a short-

hand notation (Equations 2.2–2.3) commonly used in composites literature, with indices

(i, j = 1,2, . . . ,6). Note that shear strains ε4, ε5, and ε6 are defined as engineering shear

strains, double that of the expressions for shear strain in linear elasticity theory.

σ1 ≡ σ11; σ2 ≡ σ22; σ3 ≡ σ33; σ4 ≡ σ23; σ5 ≡ σ13; σ6 ≡ σ12 (2.2)

ε1 ≡ ε11; ε2 ≡ ε22; ε3 ≡ ε33; ε4 ≡ 2ε23; ε5 ≡ 2ε13; ε6 ≡ 2ε12 (2.3)

Figure 2.1 illustrates the material coordinate system used in composite laminate

theory.
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Figure 2.1 Material Coordinate Axis System

The constitutive relations in Equations 2.1a–2.1f can be written in matrix form. The

result is the compliance matrix S. The constitutive relations then appear as:
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. (2.4)

Replacing the compliance terms in Equation 2.4 with the coefficients of the stress terms

in Equations 2.1a–2.1f, the constitutive relations can be written in matrix form explicitly
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in terms of engineering constants:
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. (2.5)

Because the compliance matrix S is symmetric, i.e. Si j = S ji, the following equali-

ties are observed in the cross-diagonal terms of S:

ν21

E2
=

ν12

E1
;

ν31

E3
=

ν13

E1
;

ν32

E3
=

ν23

E2
. (2.6)

Thus, the constitutive relations for an orthotropic material can be rewritten by replacing

ν21, ν31, and ν32 terms in Equation 2.4 with the equalities in Equation 2.6 as follows:
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. (2.7)

2.1.2 Transversely Isotropic Materials. When a material has properties inde-

pendent of coordinate direction in one of its planes, it is said to be transversely isotropic.

Assume, for instance, that the plane of isotropy is the 23-plane. Since the material’s prop-

erties are independent of coordinate direction in this plane, the 2- and 3-directions are

equivalent, i.e. E2 = E3, ν12 = ν13, and G12 = G13. Also, Equation 2.8 holds for the
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23-plane of isotropy:

G23 =
E2

2(1+ν23)
. (2.8)

The preceding equalities can be used to write the constitutive matrix equation for a trans-

versely isotropic material in the form of Equation 2.9, again explicitly in terms of engi-

neering constants:
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1
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0 0 0

−ν12
E1

−ν23
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1
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0 0 0

0 0 0
2(1+ν23)

E2
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0 0 0 0 1
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0

0 0 0 0 0 1
G12
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. (2.9)

2.2 Composite Laminate Theory

In order to determine the effective elastic and shear moduli for the face sheets, lam-

inate theory is used. Agarwal [1], Herakovich [10], and Whitney [30] describe this theory

in detail. It is useful to determine effective engineering constants for a composite laminate

so one can compare laminates to other materials or select materials for structural design

purposes. Presented here is the application of laminate theory to determine the effective

spanwise elastic moduli of the face sheets. The presentation follows the aforementioned

references, notably [10].

Laminate theory is based on the plane stress assumption, that is, all through-

thickness stresses in the laminate are considered irrelevant. For most problems, this is

acceptable because the thickness dimension of the laminate is usually orders of magnitude

less than either the span or width dimensions, which carry most of the stress.

Starting with the constitutive relations for an orthotropic material in Equation 2.4,

the stress-strain relationship for a composite lamina in a plane stress condition can be
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simplified to:
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ε6



















=











S11 S12 0

S21 S22 0

0 0 S66
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. (2.10)

Inverting this relationship, we obtain
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σ6



















=











Q11 Q12 0

Q21 Q22 0

0 0 Q66





























ε1

ε2

ε6



















. (2.11)

where Q is known as the reduced stiffness matrix. It is important to note, however, that

the terms of the reduced stiffness matrix Q are not equal to the corresponding terms of the

stiffness matrix C from elasticity theory. This relationship is fully developed in [23] and

[10]. The reduced stiffness matrix terms Qi j can be written in terms of the compliance

matrix terms Si j as follows, using the fact that Q = S−1:

Q11 =
S22

S11S22 −S2
12

; Q22 =
S11

S11S22 −S2
12

; Q12 =
−S12

S11S22 −S2
12

; Q66 =
1

S66
. (2.12)

Qi j can also be expressed in terms of the lamina engineering constants as follows:

Q11 =
E1

1−ν2
12

E2
E1

(2.13a)

Q12 =
ν12E2

1−ν2
12

E2
E1

(2.13b)

Q21 = Q12 (2.13c)

Q22 =
E2

1−ν2
12

E2
E1

(2.13d)

Q66 = G12. (2.13e)

The stiffness matrix elements Q16, Q61 Q26, and Q62 are zero in symmetric laminates

because these laminates do not exhibit shear coupling. Whitney develops the stiffness ma-
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trix for unbalanced laminates in [30]. In practice, unbalanced laminates are not normally

fabricated because during the cooling process, residual thermal stresses cause laminate

warping.

For an off-axis lamina with fiber orientation θk, a coordinate transformation is nec-

essary to express the lamina reduced stiffness matrix in global coordinates. This trans-

formed stiffness matrix is Q̄ and its elements take the form of Equations 2.14a–2.14f, with

m = cosθk and n = sinθk:

Q̄11 = Q11m4 +2(Q12 +2Q66)m
2n2 +Q22n4 (2.14a)

Q̄12 = (Q11 +Q22 −4Q66)m
2n2 +Q12(m

4 +n4) (2.14b)

Q̄22 = Q11n4 +2(Q12 +2Q66)m
2n2 +Q22m4 (2.14c)

Q̄16 = [(Q11 −Q12 −2Q66)m
2 +(Q12 −Q22 +2Q66)n

2]mn (2.14d)

Q̄26 = [(Q11 −Q12 −2Q66)n
2 +(Q12 −Q22 +2Q66)m

2]mn (2.14e)

Q̄66 = (Q11 +Q22 −2Q12 −2Q66)m
2n2 +Q66(m

4 +n4). (2.14f)

Only cross-ply laminates are considered in this thesis, therefore the above expres-

sions can be simplified and expressed in matrix form as:

Q̄0◦ =















E1

1−ν2
12

E2
E1

ν12E2

1−ν2
12

E2
E1

0

ν12E2

1−ν2
12

E2
E1

E2

1−ν2
12

E2
E1

0

0 0 G12















(2.15)

Q̄90◦ =















E2

1−ν2
12

E2
E1

ν12E2

1−ν2
12

E2
E1

0

ν12E2

1−ν2
12

E2
E1

E1

1−ν2
12

E2
E1

0

0 0 G12















. (2.16)
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Laminate theory considers the effect of laminae of distinct fiber orientation θk cured

together in a specific stacking sequence. The constitutive relations for a laminate can be

expressed as follows:






N

M







=





A B

B D











ε0

κ







, (2.17)

where A, B, and D are known as the laminate in-plane stiffness, bending-stretching cou-

pling and bending stiffness matrices, respectively. {N} is the in-plane force per unit

length, {M} is the bending moment per unit length, {ε 0} is the laminate strain at the

midplane and {κ} is the laminate curvature. {ε0} and {κ} are associated with the lami-

nate and are not functions of the depth coordinate z.

A, B, and D are defined in terms of the lamina reduced stiffness matrices as follows:

A =
N

∑
k=1

[Q̄]k(zk − zk−1) (2.18a)

B =
1
2

N

∑
k=1

[Q̄]k(z2
k − z2

k−1) (2.18b)

D =
1
3

N

∑
k=1

[Q̄]k(z3
k − z3

k−1). (2.18c)

where z is the distance from the laminate midplane along the depth coordinate and k is

the ply number, as depicted in Figure 2.2. The z-axis in laminate theory is conventionally

regarded as being positive downward, and plies are conventionally numbered in sequence

from top ply (−z) to bottom ply (+z). If one deals exclusively with symmetric laminates,

B = 0 and the in-plane response is decoupled from the bending response.

{N} = A{ε0} (2.19a)

{M} = D{κ}. (2.19b)
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Figure 2.2 Composite Laminate Nomenclature

Therefore, in symmetric laminates, in-plane and bending response can be consid-

ered separately. Effective laminate engineering constants are obtained from the laminate

in-plane stiffness matrix A. The following method of determining laminate engineering

constants presented here follows [10].

First, one must define the laminate average stress over the laminate thickness 2H.

This can be represented as follows:

{σ̄} ≡ 1
2H

{N} =
1

2H
A{ε0}. (2.20)

Inverting this relationship gives midplane strain as a function of average applied stress:

{ε0} = 2HA−1{σ̄}. (2.21)
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One can define a new quantity a∗, the laminate compliance matrix, as:

a∗ ≡ 2HA−1, (2.22)

whereby the laminate constitutive relations can be expressed in general form as:



















ε0
1

ε0
2

ε0
6



















=











a∗11 a∗12 a∗16

a∗12 a∗22 a∗26

a∗16 a∗26 a∗66





























σ̄1

σ̄2

σ̄6



















. (2.23)

Now, similar to the method used to obtain Equation 2.5, elements of the laminate

compliance matrix are expressed in terms of engineering constants; however, in the fol-

lowing representation the engineering constants are the effective engineering constants for

the entire laminate. For a symmetric laminate:



















ε0
1

ε0
2

ε0
6



















=











1
Ex

−νxy
Ex

0

−νxy
Ex

1
Ey

0

0 0 1
Gxy





























σ̄1

σ̄2

σ̄6



















. (2.24)

This expression can now be written in terms of reduced stiffnesses by inverting the con-

stitutive relationship and solving for the engineering constants. Since there is no shear

coupling, the engineering constants simplify to:

Ex = Q̄11 −
Q̄2

12

Q̄22
, Ey = Q̄22 −

Q̄2
12

Q̄11
, Gxy = Q̄66, νxy =

Q̄12

Q̄22
. (2.25)

For the sandwich beam theory given in this presentation, the spanwise effective engineer-

ing constant Ex is used for the face sheets because the majority of the in-plane stress is in

the spanwise direction.
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2.3 Sandwich Beam Theory

A sandwich beam theory is developed by Allen [2] that considers the fact that the

face sheets and core have distinct material properties. This theory is used to validate

experimental results for midspan displacement of a sandwich beam and strain on its upper

and lower face sheets, similar to the procedure in [24]. The theory is an extension of

elementary beam theory, which states that plane cross sections of a beam remain plane

under pure bending.

For an isotropic beam, the relation between bending moment and curvature can be

expressed as follows:
M
EI

= − 1
R

, (2.26)

where M corresponds to bending moment and R to the radius of curvature. The term

EI, known as flexural rigidity, determines the degree of flexure of the beam under pure

bending, and for isotropic beams is calculated by multiplying the stiffness modulus E by

the area moment of inertia of the cross section of the beam I. However, for a sandwich

beam consisting of two distinct materials, the effect on flexural rigidity by each constituent

must be considered. The expression for flexural rigidity is represented in Equation 2.27.

For convenience, and to distinguish flexural rigidity for a sandwich beam from that of a

homogeneous beam, the symbol D is used.

D = Ef
bt3

6
+Ef

btd2

2
+Ec

bc3

12
, (2.27)

The above expression for flexural rigidity consists of three terms. The dimensions

b, c, t, and h represent the width of the beam, thickness of the core, thickness of one face

sheet, and total beam thickness, respectively. The dimension d is the distance between the

midplanes of the upper and lower face sheets: d = (h + c)/2, or equivalently d = t + c.

These expressions assume face sheets of equal thickness. The first term of Equation 2.27

represents the flexural rigidity of the face sheets about their own axes. Since the face

sheets have a rectangular cross section, each face sheet contributes a flexural rigidity of its
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stiffness Ef times its area moment of inertia, bt3/12. This product is doubled to give the

flexural rigidity contribution of both face sheets. The second term represents the flexural

rigidity of the face sheets about the sandwich centroidal axis. As a result of invoking

the parallel axis theorem [28], the flexural rigidity term for each face sheet also includes

Ef times the product of the face sheet cross sectional area and the square of the distance

between the centroidal axis of the face sheet and that of the sandwich beam, btd2/4. The

third term represents the flexural rigidity of the core—the product of the core stiffness

Ec and its area moment of inertia. As it also has a rectangular cross section, its area

moment of inertia is bc3/12, similar to that of the face sheet, but since its centroidal axis

is coincident with the centroidal axis of the sandwich beam, there is no additional area

moment term due to axis offset.

The second term in Equation 2.27 is the dominant term because of the high stiffness

of the face sheets relative to the core and their distance from the centroidal axis of the

sandwich beam.

From isotropic beam theory [22], the exact solution for midspan displacement of a

sandwich beam due to a four-point bending load is expressed as:

w1 =
Pa

48EI
(3L2 −4a2), (2.28)

where P is the total load on the beam such that each point load at the midsurface of the

beam is equal to P/2, a is the distance between the support and the load (symmetric

loading is assumed, see Figure 2.3), EI is the flexural rigidity of the beam, and L is the

beam support span. For a = L/4, the equation becomes:

w1 =
11PL3

768D
. (2.29)

In addition to bending moment, shear forces in the sandwich structure contribute to

midspan displacement, primarily in the core. It is reasonable to assume that the shear force

is constant through the thickness of the core because of the high stiffness of the face sheets
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Figure 2.3 Four Point Bending of an Isotropic Beam

relative to the core. The shear stress that results is of the form τ = Q/bd, and is associated

with the shear strain γ = Q/Gbd. In a four-point bend scenario, the shear strain is constant

in the region between the support and the load, and is equal to γ = P/2Gbd. According to

Allen [2], this shear strain is not quite equal to the slope of the vertical displacement, as

shown in Figure 2.4.

Thus, the differential equation for the vertical displacement contribution due to shear

is expressed as:
dw2

dx
= γ

c
d

=
Pc

2Gbd2 . (2.30)

In our scenario, shear strain is constant from 0 ≤ x ≤ L/4 and zero from L/4 ≤ x ≤ L/2,

so the vertical displacement at the midspan due to shear is:

w2 =
Pc

2Gbd2 ·
L
4

=
PLc

8Gcbd2 , (2.31)

where G = Gc, the shear modulus of the core. This consideration is based on the assump-

tion that the core carries all of the shear stress. Midspan displacement of the beam can

thus be approximated by superimposing displacement due to both bending and shear, as
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Figure 2.4 Shear Deformation of a Beam With Thick Faces

follows:

δ = δbending +δshear = w1 +w2 =
11PL3

768D
+

PL
8(GA)eq

, (2.32)

where

(GA)eq = Gc
bd2

c
. (2.33)

In this consideration, the core properties Gc and Ec are obtained from experimental data.

Normal strain in the face sheets at the midspan of the beam is approximated by:

εx = ±Mh
2D

= ±PLh
16D

, (2.34)

where the upper face sheet is subjected to negative (compressive) strain and the lower face

sheet is subjected to positive (tensile) strain. Maximum stress in the core for the four-point

bending scenario is approximated by:

τ =
P

2bd
. (2.35)
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2.4 Layerwise Theory of Finite Element Analysis

The finite element method used in this presentation is the work of Perel and Pala-

zotto [17], [19]. Perel gives the complete development of this method in [17]. This section

is a summary of the layerwise finite element formulation used for the present study.

Perel and Palazotto develop a geometrically nonlinear theory for a thick sandwich

plate based on the fact that through-thickness strains play a significant role in the finite

element calculations due to the high thickness to length ratio, thickness of the face sheets,

and difference in magnitude between the material properties of the face sheets and the

core. The theory is based on a layerwise model consisting of three sublaminates: lower

face sheet, core, and upper face sheet.

The following assumptions are made in the layerwise theory in both the core and

the face sheets [16]:

• Transverse displacement varies in the thickness direction (the core and face sheets

are both transversely flexible),

• In-plane displacements vary nonlinearly,

• Transverse shear strain εxz and transverse normal strain εzz are taken into account,

• Transverse shear stress σxz and transverse normal stress σzz are computed by inte-

gration of pointwise nonlinear equations of motion,

• Nonlinear strain-displacement relations are used in order to take account of moder-

ately large displacements and rotations.

The primary unknown functions of the finite element problem for a sandwich plate

in cylindrical bending are:

u0, v0, w0, ε(k)
xz , ε(k)

yz , ε(k)
zz , (2.36)

where (k = 1,2,3) are the sandwich panel zones corresponding to lower face sheet, core,

and upper face sheet, in that order, and displacement is at the midsurface of the plate.
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Each element consists of two nodes, at finite element coordinates x = 0 and x = l, re-

spectively. The formulation will begin with all degrees of freedom and nonlinearity taken

into account, and will be simplified to the form it appears in the finite element solution

considered in this thesis.

Figure 2.5 Sandwich Plate Coordinate System and Notations

To formulate the finite element, one begins with the following strain-displacement

relationships:

εxx = u,x +
1
2
(w,x)

2 (2.37a)

εyy = v,y +
1
2
(w,y)

2 (2.37b)

εxy =
1
2
(u,y + v,x +w,xw,y) (2.37c)

εxz =
1
2
(u,z +w,x) (2.37d)

εyz =
1
2
(v,z +w,y) (2.37e)

εzz = w,z, (2.37f)

where the subscripted comma notation is used to indicate partial derivatives with respect

to the variable following the comma. The strain-displacement relationships above, known
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as the von Karman relationships, are geometrically nonlinear, that is, the expressions for

strain are expressed in higher than first order terms of displacement. If one is interested in

only the linear part of the solution because of the small displacements and small rotations

involved in the particular problem under consideration, the second-order terms can be set

equal to zero. This simplification is made hereafter in this analysis.

For a wide sandwich plate, the plane strain condition is assumed, thus all degrees

of freedom in the y-coordinate direction vanish, allowing for the unknowns v, εyy, εxy, and

εyz to be removed. Also, displacements u and w become functions only of x and z. The

unknown functions are then reduced to:

u0, w0, ε(1)
xz , ε(1)

zz , ε(2)
xz ε(2)

zz , ε(3)
xz , ε(3)

zz . (2.38)

The development is continued by expressing the functions for displacement in each

of the three zones. These displacements can be expressed using the strain-displacement

relationships in Equations 2.37a–2.37f as follows:

w(k)
,z (x,z) = ε(k)

zz (2.39a)

u(k)
,z (x,z) = 2ε(k)

xz −w(k)
,x . (2.39b)

These expressions are integrated along the z-coordinate (i.e. in the thickness direction) to

solve for the displacement functions in each zone:

w(1) = w0 + ε(2)
zz z2 + ε(1)

zz (z− z2) (2.40a)

w(2) = w0 + ε(2)
zz z (2.40b)

w(3) = w0 + ε(2)
zz z2 + ε(3)

zz (z− z3) (2.40c)

u(1) = u0 +(2ε(2)
xz −w0,x)z2 +(2ε(1)

xz −w0,x)(z− z2) (2.40d)

u(2) = u0 +(2ε(2)
xz −w0,x)z (2.40e)

u(3) = u0 +(2ε(2)
xz −w0,x)z3 +(2ε(3)

xz −w0,x)(z− z3), (2.40f)

2-17



where w(k) and u(k) are the displacements along the z- and x-coordinate directions, respec-

tively, in the face sheets (k = 1,3) and core (k = 2). The zero subscripts w0 and u0 indicate

displacements at the midspan (z = 0).

Next, the strains can be expressed in terms of the unknown functions in each sub-

laminate zone by substituting the displacement functions into the strain-displacement re-

lationships in Equations 2.37a–2.37f. The expressions for strain are presented in [19].

The interpolation polynomials (shape functions) selected for this finite element are

obtained from the virtual work principle, and are of sufficient order to ensure continuity

of the degrees of freedom at the element boundaries:

u0 = bM1 M2c







u(0)

u(l)







, (2.41a)

ε(k)
xz = bM1 M2c







ε(k)
xz (0)

ε(k)
xz (l)







, (2.41b)

where

M1 = 1− x
l
, M2 =

x
l
, (2.42)

and

w0 = bN1 N2 N3 N4c































w0(0)
dw0
dx (0)

w0(l)
dw0
dx (l)































, (2.43a)

ε(k)
zz = bN1 N2 N3 N4c































ε(k)
zz (0)

dε(k)
zz

dx (0)

ε(k)
zz (l)

dε(k)
zz

dx (l)































, (2.43b)
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where

N1 = 1− 3x2

l2 +
2x3

l3 , N2 = x− 2x2

l
+

x3

l2 , N3 =
3x2

l2 − 2x3

l3 , N4 =−x2

l
+

x3

l2 . (2.44)

The functions M are first-order Lagrangian interpolation functions, and the functions N

are third-order Hermitian interpolation functions. This is developed fully in [19].

Therefore, the combined element has 24 degrees of freedom. The following 12

degrees of freedom are present at each node:

u0, ε(1)
xz , ε(2)

xz , ε(3)
xz , w0,

dw0

dx
, ε(1)

zz ,
dε(1)

zz

dx
, ε(2)

zz ,
dε(2)

zz

dx
, ε(3)

zz ,
dε(3)

zz

dx
. (2.45)

These degrees of freedom are reduced by making two simplifying assumptions about the

problem. First, it is assumed that, because the face sheets are usually thin in comparison

to the core, the displacements and strains in the face sheets can be neglected. This al-

lows us to remove the degrees of freedom with the (1) and (3) superscripts. Second, we

remove spanwise displacement from our consideration of the sandwich, as the load will

be imposed in the z-coordinate direction and we are primarily interested in the strains and

stresses in this through-thickness direction. This results in the following 5 nodal degrees

of freedom, presented in the order in which they are established in the finite element code:

w0,
dw0

dx
, ε(2)

xz , ε(2)
zz ,

dε(2)
zz

dx
. (2.46)

These degrees of freedom are then substituted into the classic equation of finite element

analysis [k]{d} = {r}. This equation is solved for the unknown degrees of freedom, im-

posing the displacement and force boundary conditions according to the problem of inter-

est. While it is possible using the theory developed by Perel and Palazotto to consider a

time-dependent problem with geometric nonlinearities present, the simplifications above

assume a linear static solution, which is valid for the low loading rate and small displace-

ments considered in this thesis.
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Once the displacements and strains are found, the stresses are obtained in a post-

processing stage. The in-plane stresses are calculated for each sublaminate zone from the

constitutive relations obtained from elasticity theory, which are as follows for the case of

cylindrical bending:

σ (k)
xx =

E(k)

(1+ν(k))(1−2ν (k))
[(1−ν (k))ε(k)

xx +ν(k)ε(k)
zz ] (2.47a)

σ (k)
yy =

E(k)ν(k)

(1+ν(k))(1−2ν (k))
(ε(k)

xx + ε(k)
zz ) (2.47b)

σ (k)
xy = 0. (2.47c)

The transverse (through-thickness) stresses are calculated by integrating the equilibrium

equations in each sublaminate zone through the thickness coordinate z, neglecting body

forces:

σ (k)
xx,x +σ (k)

xz,z = 0 (2.48)

σ (k)
xz,x +σ (k)

zz,z = 0 (2.49)

σ (k)
yz,x +σ (k)

yz,z = 0. (2.50)

First, σxz is calculated by integrating Equation 2.48, knowing the result of the calculation

of σxx from the constitutive relations (Hooke’s law). Then, Equation 2.49 is integrated and

solved for the unknown σzz. The transverse stress expression σ (k)
yz = 0 is the result of the

constitutive relations for plane strain, and is presented with the equilibrium equations for

completeness.

The following boundary conditions are imposed on the upper and lower surfaces:

σ (1)
xz = 0, σ (1)

zz = −ql

b
(z = z1) (2.51)

σ (3)
xz = 0, σ (3)

zz =
qu

b
(z = z4), (2.52)
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where ql and qu are the distributed loads for the lower and upper face sheet, respectively,

over the element.

The continuity conditions of displacements and transverse stresses at the sublami-

nate interfaces are also enforced. These are represented as:

u(1) = u(2), w(1) = w(2), σ (1)
xz = σ (2)

xz , σ (1)
zz = σ (2)

zz (z = z2) (2.53)

u(2) = u(3), w(2) = w(3), σ (2)
xz = σ (3)

xz , σ (2)
zz = σ (3)

zz (z = z3). (2.54)

For a rigorous, thorough presentation of the layerwise finite element theory, the

presentations in [17] and [19] should be consulted.

2.5 Failure Criteria

Once the in-plane and transverse (through-thickness) stresses are calculated, the fi-

nite element code computes the average stress over the element length for each stress

component, and transforms the average stresses to the principal material coordinate sys-

tem. These stresses are used to predict failure by the use of existing failure criteria.

Tsai and Wu [27], Hashin [9], and others have developed criteria to predict when

failure occurs in an anisotropic material. The failure criteria take a macroscopic approach

to the problem, avoiding the complexity of the micromechanics involved and making it

possible for one to use relatively simple formulae to predict the occurrence of failure.

The Tsai-Wu and Hashin criteria are used in the computational analysis of the sandwich

structure. The layerwise finite element method presented herein uses the Tsai-Wu criterion

in the core and the Hashin criterion in the face sheets. The Hashin criterion is selected for

the face sheets because it is specifically geared to indicate failure modes in a unidirectional

composite. Once failure is indicated by one of the failure criteria, the analysis is stopped,

and the load that resulted in failure is said to be the failure load for the sandwich beam.
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2.5.1 Tsai-Wu Criterion. Tsai and Wu developed a criterion that indicates fail-

ure for an anisotropic material that undergoes a three-dimensional state of stress. Failure

is said to have occurred when the following condition is met:

F ≡ Fiσi +Fi jσiσ j ≥ 1, (2.55)

Let X , Y, Z be the lamina normal strengths in tension along the (1, 2, 3) directions;

X∗, Y ∗, Z∗ the lamina normal strengths in compression similarly; and S23, S13, S12 the

shear strengths in the (23, 13, 12) planes, respectively. Then the Fi and Fi j are expressed

as follows:

F1 =
1
X
− 1

X∗ , F2 =
1
Y
− 1

Y ∗ , F3 =
1
Z
− 1

Z∗ ,

F11 =
1

XX∗ , F22 =
1

YY ∗ , F33 =
1

ZZ∗ , F44 =
1

S2
23

, F55 =
1

S2
13

, F66 =
1

S2
12

,

F12 = F21 = −1
2

1√
XX∗YY ∗ , F13 = F31 = −1

2
1√

XX∗ZZ∗ , F23 = F32 = −1
2

1√
YY ∗ZZ∗ .

(2.56)

If failure is indicated, the failure mode is determined by the following expressions

[17], where the shorthand notation for coordinate direction from Equation 2.2 is used:

H1 = F1σ1 +F11σ2
1 (2.57a)

H2 = F2σ2 +F22σ2
2 (2.57b)

H3 = F3σ2
3 (2.57c)

H4 = F44σ2
4 (2.57d)

H5 = F55σ2
5 (2.57e)

H6 = F66σ2
6 . (2.57f)

The largest Hi is selected as the quantity that determines the dominant failure mode, where:

H1 → E1, H2 → E2, H3 → E3, H4 → G23, H5 → G13, H6 → G12. (2.58)
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The stiffness corresponding to the largest H is said to have been reduced as a result of

the structural failure by a factor called the stiffness reduction coefficient (SRC). The SRC

is an arbitrarily small number (on the order of 10−3), used to reduce the corresponding

stiffness well below its original value while keeping it large enough to avoid matrix ill-

conditioning.

2.5.2 Hashin Criterion. Hashin provides a criterion that can be used to de-

termine failure mode in a unidirectional composite. Modes of failure predicted by this

criterion are fiber failure in tension, fiber failure in compression, matrix failure in ten-

sion or compression, and delamination. For this presentation, delamination (separation

of plies in the face sheets) is not considered because, as observed in [17], delamination

occurs only after the appearance of matrix cracks. Matrix cracking is an indication of the

initiation of matrix failure in tension, and this thesis only considers initial failure in the

sandwich structure.

Fiber failure in tension in a lamina is predicted for σ11 > 0 when:

σ11

X
+

σ12 +σ13

S12
≥ 1. (2.59)

Fiber failure in compression in a lamina is predicted for σ11 < 0 when:

(σ11

X∗

)2
≥ 1. (2.60)

Matrix failure in tension is predicted for σ22 +σ33 > 0 when:

(

σ22 +σ33

Y

)2

+
σ2

23 −σ22σ33

S2
23

+
σ2

12 +σ2
13

S2
12

≥ 1. (2.61)

2-23



Finally, matrix failure in compression is predicted for σ22 +σ33 < 0 when:

σ22 +σ33

Y ∗

[

(

Y ∗

2S23

)2

−1

]

+
(σ22 +σ33)

2

4S2
23

+
σ2

23 −σ22σ33

S2
23

+
σ2

12 +σ2
13

S2
12

≥ 1. (2.62)

In the following chapter, experimental procedure and observations are discussed.

Photographs of the specimens are presented to illustrate experimental phenomena. The

theories presented above are used later in Chapter IV to compare theoretical predictions

to the experimental results.
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III. Sandwich Beam Experimental Procedure and Observations

3.1 The Experiments

The objective of the experimental portion of this research is to experimentally

demonstrate and characterize failure in the sandwich structure. Similar to previous ex-

perimental work in sandwich construction [24], a four-point bend test is performed on a

sandwich structure consisting of a carbon foam core and laminated face sheets, keeping

both materials and dimensions consistent with the above cited research, but varying face

sheet layup in order to observe the potential for failure modes appearing in the face sheets

in addition to the core. The only failure mode observed in [24] for the materials and

geometry used in this thesis was that of core failure in shear.

The carbon foam was obtained from Touchstone Research Laboratory. It is assumed

to have a ligament microstructure, the result of the foam assuming a structure having min-

imum surface energy during the manufacturing process. The microstructure of the carbon

foam is modeled to possess a tetrahedral structure with the foam ligaments oriented ap-

proximately 109◦ with each other. A model of the ligament geometry has been developed

by the consideration of the material microstructure as an array of solid tetrahedrons from

which spherical voids are removed. These models are depicted in Figures 3.1 and 3.2. The

spheres are generated with their centers coincident with the four vertices of each tetrahe-

dron, and the radii of the spherical voids are functions of the porosity of the foam. The

porosity of the carbon foam used in this experiment is higher than 80% (its theoretical

value is not less than
√

2 for coalescing spheres). The ligaments act as stiffeners, where

each ligament can be considered as a beam, and the four ligaments that comprise the tetra-

hedral microstructure can be considered as a frame or truss structure [25]. See Figure 3.3

for a photograph of the foam microstructure.

This research considers the carbon foam on a macroscopic level. Bulk material

properties for the carbon foam are used in the analysis. The carbon foam is anisotropic on

a macroscopic scale because when it is formed, the voids in the material are not exactly
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Figure 3.1 Three-Dimensional Mesh of Tetrahedral Ligament Microstructure [25]

Figure 3.2 One-Dimensional Mesh of Tetrahedral Ligament Microstructure [25]
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spherical. Thus, the voids cause a difference between the strength and stiffness prop-

erties in the thickness direction, and those in the plane of the specimen. Furthermore,

due to specimen irregularity in the material microstructure, the material properties vary

throughout the specimen, making the bulk properties approximate representations of any

particular sample.

Carbon foam is selected as a core material because of its high strength-weight and

stiffness-weight ratios. Its heat resistance makes it suitable for applications in combus-

tors and similar high-temperature applications. It also has a low coefficient of thermal

expansion, which makes it a good candidate for space structures that are exposed to large

thermal gradients. It is a good insulator (thermally and mechanically) and can be used in

applications requiring energy-absorbing materials [24], since it has the ability to absorb

impact energy through crushing (inelastic compression).

The laminated face sheets, consisting of unidirectional long graphite fibers and bis-

maleimide (BMI) matrix, are provided by the manufacturer in the form of rolled prepreg

tape. Prepreg is the short form for preimpregnated fiber-reinforced plastics. Prepregs

consist of roving, woven fabric, continuous unidirectional fiber reinforcement sheets, or

random chopped-fiber sheets impregnated with a partially cured resin system [1]. The

material properties of the prepreg are stated to be equivalent to those of Cytec CYCOM

IM7/5250-4 [5].

Figure 3.3 Scanning Electron Microscope Image of Carbon Foam [24]
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3.1.1 Fabrication of Specimens. The carbon foam core specimens were cut

from an approximately 13.9 mm thick sheet, using a diamond wafering saw. Nine beam

cores were cut to measure 203.2 mm long by 25.4 mm wide. They were then rinsed and

allowed to air dry. After they had dried, the specimens were measured. All dimensions

are measured using a caliper, and all masses are measured using a Mettler PE 3600 scale,

accurate to 0.01 g. These measurements are presented in Table 3.1.

Table 3.1 Carbon Foam Core Measurements

Width Length Thickness Mass Volume DensitySpecimen
[mm] [mm] [mm] [g] [cm3] [g/cm3]

1 25.451 203.20 13.913 33.04 71.952 0.45920
2 25.457 203.20 14.002 34.04 72.430 0.46997
3 25.337 203.20 13.926 33.29 71.694 0.46433
4 25.337 203.20 13.894 34.03 71.531 0.47574
5 25.438 203.20 13.830 34.60 71.489 0.48399
6 25.457 203.20 13.824 33.64 71.510 0.47042
7 25.413 203.20 13.856 33.76 71.549 0.47185
8 25.330 203.20 13.894 33.07 71.513 0.46244
9 25.425 203.20 13.932 33.60 71.978 0.46681

Mean 25.404 203.20 13.897 33.674 71.739 0.46942
Std. Dev. 0.22% 0.00% 0.40% 1.50% 0.45% 1.59%

The laminae were cut from a 304.8 mm wide roll of prepreg tape to measure

304.8 mm by 304.8 mm, in order to prepare two [0/90/0]T and two [0/90]S laminates.

Symmetric laminate layups were selected so that residual thermal stresses did not cause

warping in the laminates as they cured. The laminae were then stacked and prepared for

the autoclave. The autoclave, manufactured by Thermal Equipment Corporation, Los An-

geles, CA, has a working surface measuring 914.4 mm by 914.4 mm. The laminates were

cured at 179 ◦C for 6 hours under 689 kPa (6.80 atm) of pressure (a vacuum was main-

tained until the temperature and pressure reached 93 ◦C and 552 kPa (5.44 atm), respec-

tively), after which they were post-cured at 227 ◦C for another 6 hours under atmospheric

pressure (1.0 atm). The laminates were then allowed to cool to room temperature (about

21 ◦C) and were visually inspected for damage. No visual evidence of damage due to

warping or bubbling was found.
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After the laminates cooled, the face of each laminate sheet to be adhered to the car-

bon foam core was prepared using a media blaster. The 304.8 mm by 304.8 mm sheets

were then cut into 203.2 mm long by 25.4 mm wide panels to match the length and width

of the foam cores. Six panels were cut from one [0/90/0]T laminate, and six from one

[0/90]S laminate. The other six panels were cut from the second [0/90/0]T laminate

perpendicular to its 0◦ fiber direction, so that the resulting panels had a [90/0/90]T orien-

tation. Face sheet measurements are presented in Table 3.2.

Table 3.2 Laminated Face Sheet Measurements

Width Length Thickness Mass Volume DensitySpecimen
[mm] [mm] [mm] [g] [cm3] [g/cm3]

[90/0/90]T Face Sheets

1A 25.387 204.79 0.43180 3.25 2.2449 1.4477
1B 25.425 204.79 0.43180 3.11 2.2483 1.3833
1C 25.362 204.79 0.43180 3.23 2.2427 1.4402
1D 25.375 204.79 0.43180 3.26 2.2438 1.4529
1E 25.356 204.79 0.43180 3.27 2.2421 1.4584
1F 25.381 204.79 0.43180 3.16 2.2444 1.4080

[0/90]S Face Sheets

2A 25.470 204.79 0.58420 4.36 3.0471 1.4309
2B 25.375 204.79 0.58420 4.35 3.0357 1.4329
2C 25.394 204.79 0.58420 4.35 3.0380 1.4319
2D 25.381 204.79 0.58420 4.38 3.0365 1.4425
2E 25.400 204.79 0.58420 4.31 3.0388 1.4183
2F 25.400 204.79 0.58420 4.31 3.0388 1.4183

[0/90/0]T Face Sheets

3A 25.343 204.79 0.43180 3.20 2.2410 1.4279
3B 25.368 204.79 0.43180 3.20 2.2432 1.4265
3C 25.394 204.79 0.43180 3.24 2.2455 1.4429
3D 25.432 204.79 0.43180 3.25 2.2489 1.4452
3E 25.362 204.79 0.43180 3.19 2.2427 1.4224
3F 25.451 204.79 0.43180 3.24 2.2505 1.4397

Mean 25.392 204.79 0.1446/ply 1.08/ply 0.7521/ply 1.4317
Std. Dev. 0.13% 0.00% 0.84% 1.36% 0.75% 1.24%

Values shown in Table 3.3 are average measurements for the laminate and core, and

are used as nominal values for computer modeling.
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Table 3.3 Measurement Averages for Face Sheet and Core (MKS units)

Mean face sheet mass density 1431.7 kg/m3

Mean core mass density 469.42 kg/m3

Mean face sheet ply thickness 0.145×10−3 m
Mean core thickness 13.90×10−3 m
Mean core width 25.40×10−3 m

Once the face sheets were cut to the proper orientation and size, they were adhered

to the carbon foam cores using FM73 0.415 kg/m2 knit carrier adhesive. The adhesive was

kept below 0 ◦C until immediately before use in order to retain its adhesive properties, but

was allowed to warm to room temperature before use so it was not brittle. The FM73

adhesive was cut into 203.2 mm by 25.4 mm strips to match the dimensions of the face

sheets and cores. Two sheets of adhesive were used for each specimen, one to fasten each

face sheet to the top/bottom face of the carbon foam core. As the face sheets and core were

held firmly together by hand for approximately 20 seconds, the adhesive warmed slightly

and began to hold the face sheets in place, making it easier to handle the specimens. Table

3.4 shows the configuration of each specimen and should be referenced throughout to

correlate the specimen number with its constituents.

Table 3.4 Cross-Reference for Face Sheets and Cores

Layup Specimen Upper Face Sheet Lower Face Sheet Core
1 1A 1B 1

[90/0/90]T 2 1C 1D 2
3 1E 1F 3
4 2A 2B 4

[0/90]S 5 2C 2D 5
6 2E 2F 6
7 3A 3B 7

[0/90/0]T 8 3C 3D 8
9 3E 3F 9

The specimens were cured for one hour at 121 ◦C and 345 kPa (3.40 atm) using

a Wabash 267 kN hydraulic press controlled by a Honeywell AV30 dual setpoint TAS5

controller and four Barber-Colman 590 thermostats. As the specimens were heated, the

adhesive liquefied and permeated the porous structure of the carbon foam. As the speci-
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mens cooled, the adhesive hardened and formed a rigid bond between the face sheets and

the cores. In the region where the adhesive permeated the core, it increased the core’s

density. Figure 3.4 shows the face sheet and core, and the region between them where the

adhesive permeated the core. Because the porosity of the carbon foam core was greater

than 80% and the open cells of the foam were exposed to the adhesive surface, the adhe-

sive was able to fill the voids as it heated and became less viscous. When the specimen

cooled, the porosity on the exterior surfaces of the foam was reduced by the permeated

adhesive.

Figure 3.4 Face Sheet, Permeated Adhesive Region, and Core

The prepared specimens were then removed from the press and allowed to cool com-

pletely. Before strain gages were applied to the face sheets, the specimens were measured.

Measurements for the specimens are recorded in Table 3.5.

The final step in specimen preparation was to place strain gages in the center of each

face sheet, resulting in two strain gages for each specimen. All strain gages, strain gage

adhesives, and related materials were manufactured by the Micro-Measurements Divi-

sion, Measurements Group, Inc., Raleigh, NC. The gages used were 125 mill (3.175 µm)

CEA-06-125UW-350 precision strain gages, with a gage factor of 2.110± 0.5% and an

impedance of 350 Ω at 24 ◦C (± 0.3%). They were used to record strain at the midspan
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Table 3.5 Specimen Measurements

Width Length Thickness MassSpecimen
[mm] [mm] [mm] [g]

1 25.77 204.79 14.79 43.81
2 25.83 204.79 14.76 44.85
3 25.64 204.79 14.81 44.00
4 25.83 204.79 14.94 47.08
5 25.93 204.79 14.94 47.70
6 25.95 204.79 14.84 46.76
7 25.74 204.79 14.70 44.65
8 25.71 204.79 14.80 43.81
9 25.90 204.79 14.72 44.33

of both the upper and lower face sheets on their exterior surfaces as the sandwich beam

specimens were subjected to bending.

The method of applying strain gages to the face sheets as performed by this author

was as follows. First, the area on the face sheet where the strain gage was to be attached

was treated with 240-grit sandpaper to ensure good adhesion. M-Prep Conditioner A

(MCA-1, phosphoric acid) was applied to the surface with a cotton swab to clean the

surface, and was removed with another swab. Next, M-Prep Neutralizer 5A (MN5A-1,

ammonia water) was applied and removed in the same manner, to neutralize the acid. To

assist in gage placement, guide marks were made with a graphite pencil on the face sheet,

and cellophane tape (PCT-2A) was placed onto the strain gage. The gage was then lined

up and held in place to the face sheet using the cellophane tape, and the tape was gently

lifted such that the strain gage remained on the tape and not the face sheet, so that the

adhesive could be applied. To improve the adhesion between the strain gage and the face

sheet, 200 Catalyst C (isopropyl alcohol) was applied sparingly with a cotton swab to the

exposed surface of the gage, then M-Bond 200 Adhesive (cyanoacrylate ester) was spread

on the specimen using the wood end of the swab. The cellophane tape was then smoothly

pressed onto the face sheet, making sure there were no bubbles in the adhesive and that

the adhesive covered the entire surface of the strain gage. It was held firmly in place by

hand for one minute, and the tape was gently removed after five additional minutes. This

procedure was repeated until eighteen strain gages were placed, one on the upper and
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one on the lower surface for each of nine total specimens. Figure 3.5 shows a prepared

sandwich specimen.

Figure 3.5 Prepared Specimen With Attached Strain Gage (Specimen 9)

3.1.2 Setup and Test Equipment. The sandwich beam specimens were tested

with an MTS model 312.31 245 kN hydraulic press controlled by an MTS 458.20 micro-

console controller. The controller was set for a load rate of 0.254 mm/min. Each specimen

was placed into the test apparatus as shown in Figure 3.6. The cylindrical loading and

support pins, made of steel and having a diameter of 6.35 mm, were placed such that the

effective beam span (distance between support pins) was 152.4 mm, and the loading span

(distance between loading pins) was 76.2 mm. A linear varying displacement transducer

(LVDT) was placed at the midspan of the beam and connected to the controller both to

record displacement and to use in the feedback control of the press. The strain gages

on both surfaces were connected to the controller so strains and displacement could be

recorded. Applied load and elapsed time were also recorded.

3.1.3 Experimental Procedure. Specimen 4 was the first tested specimen, as

illustrated in Figure 3.6. The specimen was loaded at the rate of 0.254 mm/min until

failure. Structural failure was defined to be the displacement at which an increase in

the displacement did not correspond to a noticeable increase in the bending load, i.e. the

displacement at which the structure provided little resistance to further bending. Once

this displacement was reached, the controller was disengaged. It was not necessary to

be concerned about equipment damage in a displacement-controlled scenario as it would
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Figure 3.6 Experimental Test Setup (Specimen 4)

have been in a load-controlled scenario, where a dramatic reduction in specimen stiffness

due to brittle structural failure would have resulted in a sudden decrease in load followed

by the controller commanding a potentially dangerously high increase in displacement in

an attempt to keep a constant load rate.

The other specimens were loaded in the same manner until failure, and measure-

ments were taken of elapsed time, total load, midspan displacement, upper surface strain

and lower surface strain. Recordings of these measurements were made by a plotter inte-

grated with the MTS controller and by a digital data acquisition system. The digital data

was used for the analysis.
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3.2 Experiment Observations

Specimen 4, used as a representative sample, exhibited initial failure in the core,

as shown in Figure 3.7. The core failed due to shear stress, and the failure immediately

propagated through the thickness of the core to the interfaces of the core and face sheets at

an angle of 45◦ from the midsurface. The fact that the structure did not fail symmetrically

(i.e. for this specimen the core failed on the left side only) is evidence of the variation of

material properties throughout the core. One can also surmise from Table 3.1 that since

core density measurements vary by approximately 1.6%, the density of the core, and thus

its material properties, will also vary slightly throughout the same specimen.

Figure 3.7 Initial Failure Due to Shear Stress in the Core (Specimen 4)

It can also be seen in the figure that the core failure propagated along both the upper

and lower interfaces interior to the region where the adhesive permeated the carbon foam.
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This happened immediately after the core failed in shear—the failure propagated nearly

instantaneously toward the face sheets as they began to peel away from the core.

Figure 3.8 shows a close-up view of a typical core shear failure. Note the ligament

microstructure of the core. When the core undergoes shear stress, stress concentrations

build up in these ligaments until they are critically stressed. The ligaments break, and

brittle failure occurs as the crack rapidly propagates. A secondary shear failure can also

be observed in the image, on the left of and almost parallel to the initial shear failure. This

secondary failure resulted in a manner similar to the specimen in Figure 3.9.

The crack in the foam appears to propagate from ligament to ligament. This failure

mode gives evidence of stress concentrations forming in the ligaments between the voids.

The voids cause the foam to be weaker due to these stress concentrations. In a continuous

material, the failure would propagate along a 45◦ line of maximum shear stress through the

core, but in the carbon foam the ligaments act as stiffeners and direct the stress distribution

and failure. However, observation from experiment photographs indicates a nearly 45◦

failure propagation through the foam core. This means that the ligaments are not strong

enough to direct the stress outside of that failure line on a macroscopic level. However,

for one to more accurately consider failure, the failure phenomena due to the ligament

microstructure of the foam should be taken into account. The macroscopic failure criteria

presented in this study do not have this ability. Also, a careful look at the figure will reveal

crushing in the core due to the transverse compressive stress applied by the loading pin.

This failure feature can be more easily seen in Figure 3.8 and the additional photos in

Appendix B. The compressive failure initiated together with the shear failure at the same

load. It can also be seen that the face sheets had pulled away from the carbon foam core.

This effect due to peeling stress is discussed in the upcoming text.

Loading was increased after the initial failure, resulting in the secondary failure

shown in Figure 3.9. The initial failure weakened the core’s ability to carry shear stress

in the area of the failure, thus a second crack propagated alongside of the first. The crack

varies in direction of propagation because the initial failure changes the material properties
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Figure 3.8 Crushing Failure Due to Transverse Compressive Stress (Specimen 7)

of the core such that shear stress may be a maximum at an angle other than 45◦, although

the second shear stress crack appears to propagate almost parallel to the initial crack. In

this region of post-failure, the ligaments are required to carry more stress because of the

stiffness reduction that occurred in the failed region. This increase in stress leads to the

second crack.

When the specimen was removed from the loading apparatus, the effect of the face

sheet pulling away from the core could be readily seen. An example of this is shown in

Figure 3.10. As the failure crack propagated along the interface between the face sheet

and the core, the absence of support from the core where failure had occurred would have

led to the development of a bending moment, causing the face sheet to lift away from the

core. Figure 3.11 shows a magnified view of this effect. This effect is known as peeling

stress, the result of the bending moment. This bending moment caused the face sheet to

develop transverse tensile stress and to pull away from the core.
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Figure 3.9 Secondary Shear Failure Due to Shear Stress in the Core (Specimen 4)

One can also observe in the figure the effect of the adhesive permeating into the

porous carbon foam. Note that debonding did not occur directly between the face sheet

and core along the adhesive layer, but rather in the core itself, interior to the permeated

region. This is because the adhesive had filled the voids in the porous carbon foam core,

which increased the strength of that part of the core by allowing the energy from bending

to be transferred from the core to the adhesive.

All eight of the other specimens exhibited failure modes similar to Specimen 4, with

the notable exception of Specimen 6. While Specimen 6 responded in failure otherwise

similarly to the other specimens, it failed at a markedly lower load than the other two

specimens constructed with the same ply layups. This is further evidence of the variation

of material properties in the specimens, especially in the core. It is also possible that there

existed undetectable damage in the core, which would have reduced its strength. No indi-

cation was present to suggest that the structures exhibited failure modes in the face sheet,

specifically fiber failure in tension or compression, matrix failure in tension or compres-

sion, debonding between ply layers (delamination), or local fiber buckling. Additional

photographs in Appendix B show more detailed illustrations of the failed specimens.
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Figure 3.10 Failure Due to Peeling Stress Along Core/Face Sheet Interface (2×) (Spec-
imen 3)

Figure 3.11 Failure Along Core/Face Sheet Interface (5×) (Specimen 9)
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In the next chapter, load-displacement and load-strain curves are shown for each

sandwich specimen. These results are compared to results from finite element analysis

and analytical beam theory.
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IV. Finite Element Analysis of Sandwich Beam Construction, and

Comparison of Analytical, Computational, and Experimental Results

4.1 Finite Element Model

To computationally evaluate the nodal displacements and element stresses, a finite

element model was developed and coded. To use this finite element code, an input file

must be created as with any finite element program. The input file includes the solution

type, the dimensions and the material properties of the sandwich structure, the nodal and

element configuration, the boundary conditions imposed on the structure, and the type of

output desired.

4.1.1 Solution Type. For this analysis a linear static solution was performed,

applying static concentrated forces in a four-point bend scenario as was physically exe-

cuted in the experiment. The code was designed to calculate the failure criteria for the

core and the face sheet, and to output the results in a separate file. The code also has the

ability to generate dynamic solutions given a load distribution with magnitude that is sinu-

soidal in time; however, time-varying solutions are currently not available when applying

concentrated forces to the structure.

The linear solution was performed because the displacements and rotations are

not large enough to cause the nonlinear terms to be of any significance. The strain-

displacement relationships from Equations 2.37a–2.37f were set up in the finite element

code such that each nonlinear term is multiplied by a nonlinear flag bit that is set to 1

for a nonlinear solution and 0 for a linear solution. This procedure effectively removes

the nonlinear strain-displacement terms from the linear solution immediately upon their

introduction into the code.
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4.1.2 Dimensions and Material Properties. For consistency, all inputs to the

program are given in SI units. Material properties for the composite laminate and the

carbon foam are given in Tables 4.1 and 4.2, respectively.

Material properties for the transversely isotropic composite laminate are obtained

from [5]. The italicized quantities G23 and S23 are not experimentally determined quanti-

ties. G23 is estimated using the transversely isotropic assumption for the material, Equa-

tion 2.8 in Section 2.1. The out-of-plane shear strength S23 is obtained from another

common graphite/BMI composite [10]. The material properties presented for the carbon

foam are from currently available experimental data [24].

Table 4.1 Material Properties of Cytec CYCOM IM7/5250-4 [5]

E1 162 GPa
E2 9.7 GPa
ν12 = ν13 0.30
ν23 0.50
G12 = G13 5.9 GPa
G23 2.0 GPa
X 2618 MPa
Y = Z 66 MPa
X∗ 1620 MPa
Y ∗ = Z∗ 248 MPa
S12 = S13 103 MPa
S23 77 MPa

Table 4.2 Material Properties of Touchstone Carbon Foam [24]

E1 1056 MPa
E2 1114 MPa
E3 379 MPa
G 588 MPa
X∗ 8.86 MPa
Y ∗ 10.3 MPa
Z∗ 4.38 MPa
S 2.89 MPa

It is important to note that, while compression tests were performed to measure

elastic modulus and material strength in all three coordinate directions, the torsion test

only gives one material constant for shear modulus. Also, data from tensile tests for this
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material are not available. Because of the high porosity of the carbon foam, standard strain

measurement techniques are not able to be accurately carried out using strain gages or

extensometers. A measurement method such as optical microscopy must be used instead,

as discussed in [25]. Since there is currently no tensile test data for this carbon foam,

tensile and compressive stiffnesses and strengths are assumed to be equal. This assumption

can be removed when more data on the material becomes available.

Also note that the shear strength of the carbon foam material is lower than the com-

pressive strengths. Materials such as Nomex honeycomb, specifically designed for ap-

plication in sandwich construction, typically have high shear strengths because the core

material is expected to undergo primarily shear stress [15]. All of the foams considered

for application in sandwich construction in [24] have shear strengths on the order of, or

lower than, their compressive strengths. This is a feature inherent to foams, but the foams

have the previously discussed advantages, such as excellent thermal management, over

other materials. Thus, selection for a core material should not solely be based on shear

strength.

The problem geometry was set to match the nominal measurements from the exper-

iment. These values can be found in Table 3.3.

4.1.3 Nodal and Element Configuration. A finite element model was created

that consisted of 20 elements and 21 nodes. This model is shown in Figure 4.1. Solution

convergence was demonstrated to 2% of midspan vertical displacement upon doubling

the number of elements. The cross sections of the finite element nodal point consist of

three regions: lower face sheet, core, and upper face sheet. Each ply of the face sheet is

considered a nominal layer, and strains are calculated at the midplane of each ply. The

core is explicitly divided into nominal layers in the input file, so that stresses and failure

can be calculated at various depths within the core. This analysis considered the core as

10 nominal layers.
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Figure 4.1 Finite Element Model of Sandwich Beam

4.1.4 Boundary Conditions. The boundary conditions for a four-point bending

test were imposed on the finite element model. Vertical displacement was constrained at

node 1 and node 21, and the point loads were placed on the face sheet upper surface at

node 6 and node 16.

4.1.5 Finite Element Program Output. When the program runs, it outputs verti-

cal displacement at a specified node. Node 11 was selected to represent midspan vertical

displacement of the sandwich beam. The program also outputs the six three-dimensional

stresses at a specified point in the structure. The stresses are calculated through the inter-

polation functions. For the most part, the stresses are evaluated at the midpoint of each

element at the midplane of the ply. The location is based on the optimal coordinates of

the interpolation function, which is discussed in detail in [17]. For this analysis, the point

for stress output was selected at the center of the core, at a distance halfway between the

left support and the left point load. This point approximately represents the location of

maximum shear stress in the core. Also, since failure criteria are being calculated, a sep-

arate file is created that indicates the presence and mode of failure for each nominal layer

in each finite element.

4.2 Comparison of Results

Figures 4.2–4.10 show the load-displacement history for the four-point bending tests

performed for this thesis, along with the results for load-displacement slope from the

analytical sandwich beam theory, and both the load-displacement slope and failure load
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Figure 4.2 Specimen 1 Load-Displacement Results ([90/0/90]T Layup)

results from the finite element solution. One should note that the analytical beam theory

is used here only to obtain the beam stiffness, i.e. slope of the load-displacement curves;

it does not have the ability to determine failure load.

Initially, the stiffness output from the finite element program was large in compari-

son with the experimental stiffness and analytical results, up to 30% for some cases. This

is believed to be the result of the effect of the cylindrical plate solution assumed by the

finite element method. If the narrow beam is modeled as an infinitely wide plate, the result

is increased structural stiffness, and a given load will cause a smaller midspan displace-

ment. Therefore, the face sheet elasticity modulus E1 was reduced by 15% in order see if

the effect of cylindrical bending was important. The 15% reduction is an attempt to im-

pose a reduced transverse stiffness, provided by the fibers in the 0◦ plies of the [0/90/0]T

and the [0/90]S layups due to the Poisson effect. Thus, it appears that stiffness in the

cylindrical bending scenario is quite important, though usually this is not the case. Appar-

ently, the cross-ply orientation characterizes the increased cylindrical bending stiffness.
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Figure 4.3 Specimen 2 Load-Displacement Results ([90/0/90]T Layup)

Figure 4.4 Specimen 3 Load-Displacement Results ([90/0/90]T Layup)
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Figure 4.5 Specimen 4 Load-Displacement Results ([0/90]S Layup)

Figure 4.6 Specimen 5 Load-Displacement Results ([0/90]S Layup)
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Figure 4.7 Specimen 6 Load-Displacement Results ([0/90]S Layup)

Figure 4.8 Specimen 7 Load-Displacement Results ([0/90/0]T Layup)
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Figure 4.9 Specimen 8 Load-Displacement Results ([0/90/0]T Layup)

Figure 4.10 Specimen 9 Load-Displacement Results ([0/90/0]T Layup)
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The variation of material properties in the face sheets may also affect the stiffness result.

This reduction in stiffness is taken into account in the finite element analysis stiffness re-

sults shown in Figures 4.5–4.10. It may be possible to delve further into the program to

modify the appropriate algorithms to more accurately consider beam bending.

The failure output from the finite element program indicates that, for all cases con-

sidered herein, the core material fails due to shear stress σxz at a lower load than what

is shown in the experiment. The stresses obtained from the finite element solution were

used to manually calculate the maximum stress failure criterion in the core, and the same

calculation was made using beam theory. Neither of these methods predicted an accurate

failure load. For the finite element solution, the maximum load when the shear stress out-

put from the program were manually used to calculate the maximum stress criterion for

the [0/90/0]T layup, for example, was P = 702.8N. By way of comparison, for the beam

theory solution, the maximum load when shear stress in the core (calculated by Equa-

tion 2.35) is equal to the core shear strength S is equal to 2104 N for the three-ply layups

([0/90/0]T and [90/0/90]T) and 2126 N for the four-ply layup ([0/90]S). For reference,

the average experimental failure load was 1456.9 N for the [90/0/90]T layup, 1821.8 N

for the [0/90]S layup, and 1826.7 N for the [0/90/0]T layup. The beam theory calculation

for maximum shear stress does not take into account the ply layup, only the face sheet

thickness (as a parameter in d = t + c). Ply layup is clearly an important factor in failure

load, however, which can be readily seen by the experimental failure loads shown in the

load-displacement charts and in Table 4.3.

This failure analysis leads to the following conclusions. It is possible that the Tsai-

Wu failure criterion is not appropriate for the core material used in this study. Since

Tsai-Wu makes no consideration of the material microstructure, there may be another

criterion that could be developed to take this into account. It is also possible that the test

methods used to determine stiffnesses and strengths for the core are actually measuring

the microstructural response of the carbon foam as a structure of interconnected trusses,
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rather than its material response. Perhaps there is a different test method that can be used

other than the test methods typically used for homogeneous materials.

To verify the results of the finite element solution, the stresses and midspan dis-

placements for an isotropic beam were compared to the results from beam theory, with a

difference in displacement of 0.4% and difference in shear stress of 11%. One should note,

however, that beam theory is not geared to the consideration of through-thickness stresses.

Extensive comparisons for sandwich plates under uniform loading appear in [17]. When

finite element analysis results were compared to exact solutions from elasticity theory, it

was found that the errors in the stress and displacement fields were less than 0.50% for

most geometries. These comparisons were carried out both for homogeneous isotropic

sandwich plates, and for sandwich plates having isotropic face sheets approximately 103

times stiffer than the isotropic core.

Another reason for the variance in results is the variance in material properties in

the core specimens. Material properties for the core vary even in the same specimen, as

was seen by the different crack locations in the experiment and variation in core densities.

To investigate the applicability of the Tsai-Wu failure criterion, a phenomenologi-

cal approach to failure analysis was taken. Since the Tsai-Wu criterion did not compare

favorably to the experimental data, another criterion was established in which the shear

failure calculated by the program was suppressed and not allowed to set the damage flag

indicating the material had failed. The load was then increased until another failure mode

was indicated. The failure mode that was found was peeling failure due to tensile stress σzz

in the face sheet. This failure is also seen in the photographs of the failed specimens (e.g.

Figure 3.11) that show the face sheet pulling away from the core region, and is described

in that section. It was experimentally shown that the adhesive between the face sheet and

the core remains intact through failure, so when the face sheet pulls away from the core,

the adhesive and the part of the core permeated with the adhesive both pull away from

the core along with the face sheet. This failure phenomenon occurs nearly immediately

4-11



after the core fails due to shear stress. Thus, the phenomenological failure methodology

appropriately describes what occurred with the specimens in the laboratory.

Using the foregoing methodology for calculating onset of failure, the critical load

predicted by the finite element program was compared to that obtained by experiment.

Beam stiffnesses were also compared between experiment, sandwich beam theory, and

finite element analysis. The results appear in Table 4.3.

Table 4.3 Experimental, Analytical, and Finite Element Load-Displacement and Failure
Results

Load/Displacement Ultimate Load
[N/mm] [N]

Specimen Exp. FEA Error (%) Analytical Error (%) Exp. FEA Error (%)
1 1336.3 1491.1 11.58 1302.3 2.55 1447.9 1328.0 -8.28
2 1381.4 1491.1 7.94 1298.9 5.97 1414.1 1328.0 -6.09
3 1327.2 1491.1 12.35 1297.8 2.22 1508.8 1328.0 -11.99
4 2185.2 2390.4 9.39 2256.6 3.27 1823.3 1964.4 7.74
5 2152.9 2390.4 11.03 2246.6 4.35 2001.7 1964.4 -1.86
6 2051.0 2390.4 16.55 2246.9 9.55 1640.5 1964.4 19.74
7 2076.7 2264.8 9.06 2141.1 3.10 1929.6 1847.6 -4.25
8 2070.5 2264.8 9.38 2149.0 3.79 1813.5 1847.6 1.88
9 2002.2 2264.8 13.11 2175.6 8.66 1737.0 1847.6 6.37

Mean 11.16% 4.83% 7.58%
Std. Dev. 2.63% 2.67% 5.57%

As mentioned in Chapter III, Specimen 6 failed at a lower load than specimens 4

and 5. The author wishes to highlight that difference in Table 4.3 and restate that this is ev-

idence of the variation in material properties of the constituents of the sandwich structure.

There is also a noticeable range of stiffness and strength data for the other specimens.

These variations may also be the result of variations in testing parameters (e.g. sensor

placement) across the experimental trials.

Figures 4.11–4.19 show the load-strain curves for the nine experiments performed.

The analytical formula that correlates load to strain is found in Equation 2.34. Bottom

face sheet strain is displayed here; the strain on the top face sheet was opposite in sign of,

and similar in magnitude to, the bottom face sheet strain, as there was no in-plane failure

in any of the face sheet plies.
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Figure 4.11 Specimen 1 Load-Strain Results ([90/0/90]T Layup)

Figure 4.12 Specimen 2 Load-Strain Results ([90/0/90]T Layup)
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Figure 4.13 Specimen 3 Load-Strain Results ([90/0/90]T Layup)

Figure 4.14 Specimen 4 Load-Strain Results ([0/90]S Layup)
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Figure 4.15 Specimen 5 Load-Strain Results ([0/90]S Layup)

Figure 4.16 Specimen 6 Load-Strain Results ([0/90]S Layup)
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Figure 4.17 Specimen 7 Load-Strain Results ([0/90/0]T Layup)

Figure 4.18 Specimen 8 Load-Strain Results ([0/90/0]T Layup)
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Figure 4.19 Specimen 9 Load-Strain Results ([0/90/0]T Layup)

Table 4.4 shows the experimental load-strain slope, and the error between the ana-

lytical prediction and the experimental outcome.

As briefly discussed above, the Tsai-Wu criterion [27] is applicable to anisotropic

materials but does not consider the three-dimensional microstructure of a material. The

applicability of the criterion is based on the fact that a continuum is being considered,

whereas the material in this study may be more accurately considered as a structure re-

quiring a three-dimensional model. Tsai-Wu does not consider three-dimensional material

features, and the results from this study suggest that there may be a more appropriate cri-

terion for the carbon foam.

A finite element model based on the tetrahedral structural model of the ligaments is

being developed, as presented in [25]. The three-dimensional and one-dimensional meshes

for the tetrahedral structural models are shown in Figures 3.1 and 3.2. It was found by the

authors in the above cited work that the solution time for the three-dimensional mesh
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Table 4.4 Comparison of Experimental and Analytical Load-Strain Slopes

Specimen Experimental Analytical Error (%)
[kN] [kN]

1 580 527 9.13
2 592 527 11.06
3 584 525 10.15
4 1029 990 3.82
5 1000 985 1.50
6 971 991 2.06
7 990 949 4.14
8 1000 946 5.40
9 962 964 0.21

Mean 5.27%
Std. Dev. 3.97%

rapidly increases as the selection of the input parameters (size, orientation, etc.) increases

to an impractical value. The authors suggest using a statistical method along with the

one-dimensional model to account for variance in cell size and orientation. However, the

applicability of such a small-scale model to a relatively large sandwich structure may be

limited.

To further investigate material failure using the finite element method presented

here, another failure criterion may be considered for the core region to see if the failure

result is more aligned with the results of the experiment. It would be beneficial to apply

or develop a failure criterion that considers failure based on the porosity of the foam and

the shear flow that is produced in the ligaments.

4-18



V. Conclusions and Future Work

5.1 Conclusions

Upon completion of the experiments and consideration of the results, including the

comparisons between experimental results and theoretical calculations, a summary is pre-

sented as follows to report the primary findings of the research.

• This research demonstrated the potential for the layerwise finite element model to

be used in the prediction of onset and location of failure. The finite element solution

predicts secondary failure at an average 7.58% difference from experiment, with

a standard deviation of 5.57%, and stiffness of an average 11.16% difference from

experiment, with a standard deviation of 2.63%. The distribution of errors for failure

was approximately symmetric about zero, whereas the finite element solutions for

beam stiffness were consistently stiffer than the experimental measurements.

• By way of comparison, the analytical sandwich beam theory predicts stiffness of

an average 4.83% higher than experiment, with a standard deviation of 2.67%. The

closer result from beam theory is an indication of the increased bending stiffness of

the plate model developed in the layerwise finite element method.

• Analytical load-strain calculations compare to measured load-strain slope by an av-

erage of 5.27% difference from experiment, with a standard deviation of 3.97%.

• The Tsai-Wu criterion does not fit the experimental data for shear failure in the

core. The core has a complex three-dimensional ligament truss microstructure. The

application of shear stress to the sandwich beam structure causes shear flow to de-

velop in the ligaments; quadratic failure criteria such as Tsai-Wu do not consider

this phenomenon.

• Core failure in shear is apparently associated more with the micromechanics of the

problem than with the core’s aggregate properties. Valid results for failure were not
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achieved simply by considering the core as a homogeneous continuum in both the

finite element method and the analytical technique.

• It has been found that the peeling stress phenomenon plays an important role in

structural failure. A finite element method used to analyze sandwich structures

should include the peeling stress component. By using a phenomenological ap-

proach to failure analysis, the finite element solution correctly describes this failure

mode.

• The carbon foam core has nonhomogeneous properties. Its strength varies through-

out each specimen, and from specimen to specimen. Therefore, its failure response

also varies depending on the specimen.

• Face sheet stiffness is important in determining the failure load for the sandwich

beams. The average failure load for the [90/0/90]T layup was 1457 N, compared

with an average failure load of 1827 N for the [0/90/0]T layup. On the other hand,

the analytical sandwich beam theory predicts equal core shear stress for sandwich

beams having the same geometry.

• Penetration of adhesive into the porous foam core affects the experimental failure

response of the sandwich beams. The adhesive strengthens the exterior core surface,

reinforcing it by filling in the voids and allowing energy from bending to transfer

to the cured adhesive. When the structure fails, the face sheet peels away from the

core with the adhesive layer intact.

5.2 Future Work

This thesis investigated face sheets of varying layups and thicknesses in an attempt

to observe some indication of failure in the face sheets. No failure modes were observed

in the face sheets. Dimensions and materials used in the construction of the sandwich

beam can be changed to see where the face sheets begin to support the failure in the core

by undergoing ply-level failure or delamination. Also, since the core material used in

this study is relatively new, additional experiments can be performed to better determine
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its material properties, especially its strength and stiffness in shear, as these attributes

are critical to the failure response. Dynamic experiments could also be performed and

compared to dynamic finite element solutions. It also may be possible to investigate the

modification of appropriate algorithms in the finite element program to more accurately

consider beam bending.

The author suggests the consideration or development of a different failure criterion

for the core. The failure criterion should consider the microstructure of the carbon foam

and the interaction in a sandwich structure between the core and the face sheets. It has

been found that the Tsai-Wu criterion may not give a good indication of the onset and

mode of failure for the carbon foam, so it is possible that another failure criterion is better

suited for this material, as demonstrated by the phenomenological approach taken in this

study. The face sheets also play a role in the failure of the sandwich beams by affecting

the load at which the core fails in shear and the face sheets begin to peel away from the

core. This study of failure and subsequent modification of the Tsai-Wu criterion has the

potential to lead into the development of a new failure criterion for porous materials.
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Appendix A. Finite Element Code Input Instructions, Sample Input File

A.1 Finite Element Code Input Instructions

The following instructions were provided for running the layerwise finite element

code as developed in [17] and [19]. A dagger (†) indicates entries that were not needed for

the analysis performed in this thesis.

Units – SI units.

Coordinate System – A right-handed orthogonal Cartesian coordinate system is

used. The global system of coordinates is chosen for the plates such that the x-axis lies in

the direction of the span of the plate.

Data Entry – The concentrated forces are entered only for static analysis. In dy-

namic analysis, the number of concentrated forces (NumConcentLoads in Card 12) must

be set equal to zero.

CARD 1:

AnalysisType – Defines the type of analysis to be carried out.

1 – Nonlinear time history with damping and damage progression.

2 – Nonlinear time history with damping and without damage progression.

3 – Linear time history with damping and damage progression.

4 – Linear time history with damping and without damage progression.

5 – Linear static analysis.

6 – Eigenvalue analysis.

7 – Nonlinear static analysis.

8 – Linear static analysis with damage progression.

9 – Nonlinear static analysis with damage progression.

NumFacePlies – Number of plies in each face sheet.
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FaceMassDensity – Mass density of face sheet.

FaceThickness – Thickness of one ply of the face sheets (all plies are assumed to

have equal thickness).

IncludeCPT – Include classical plate theory.

0 – Assumed transverse strains are not set equal to zero.

1 – Assumed transverse strains are set equal to zero.

CARD 2:

E1Face, E2Face, E3Face, G12Face, G13Face, G23Face, ENu12Face,

ENu13Face, ENu23Face – Elastic constants for the face sheet.

CARD 3:

XT, XC, YT, YC, ZT, ZC, S12, S13, S23 – Material strength properties for the face

sheets.

TOPAngle(I), (I=1,NumFacePlies) – Ply angles for top face sheet (bottom to top).

BOTAngle(I), (I=1,NumFacePlies) – Ply angles for bottom face sheet (bottom to

top).

CARD 4:

NumCorePlies – Number of arbitrary plies in the core.

CoreMassDensity – Mass density of the core.

CoreThickness – Total thickness of the core.

CARD 5:

E1Core, E2Core, E3Core, G12Core, G13Core, G23Core, ENu12Core,

ENu13Core, ENu23Core – Elastic constants for the core.

CARD 6:

XTCore, XCCore, YTCore, YCCore, ZTCore, ZCCore, S12Core, S13Core,

S23Core – Material strength properties for the core.
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CARD 7:

NEqualLength – 1 for equal length FE mesh. 0 for unequal length FE mesh.

PanelLength – Length of panel.

PanelWidth – Width of panel.

NumElements – Number of finite elements.

CARD 8†: – (Note: Skip this card if NEqualLength=1)

X(I), (I=1,NumElements+1) – x-coordinates of nodes for unequal FE mesh.

CARD 9:

RigidBodyMass – Mass of rigid body resting on face.

X1 – Location of beginning of rigid body.

X2 – Location of end of rigid body.

CARD 10:

Fzero – Amplitude of external sinusoidal force on the upper surface per unit area

fPeriod – Period of external force.

X2 – Initial phase of force.

CARD 11:

Src – Stiffness reduction coefficient, src=0.001

SRC – Stiffness reduction coefficient, SRC=0.01

S – Scale for damage function in “delamination” determination.

FoundModulus – Modulus of foundation.

CARD 12:

NPRNT – Flag for printing. Set to 1 if stiffness matrices are to be printed.

NSPV – Number of displacement boundary conditions.
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NumConcentLoads – Total number of concentrated forces in the plate. Note: in

dynamic analysis, NumConcentLoads must be set equal to zero, because dynamic analysis

cannot be run with concentrated loads.

CARD 13: – (Note: Skip this card if NSPV=0)

IPV(I), (I=1,NSPV) – Degrees of freedom of displacement boundary conditions.

VPV(I), (I=1,NSPV) – Values of displacement boundary conditions.

CARD 14: – (Note: Skip this card if NumConcentLoads=0)

nFxElemNo(I) – Element number where concentrated force is applied.

FxLocation(I) – Location of concentrated force from Node I of element.

FxMag(I) – Magnitude of concentrated force. Note: provide 1 line of data of nFx-

ElemNo(I), FxLocation(I), FxMag(I) for each concentrated force.

CARD 15†: – (Note: Skip this card if type of analysis is different than transient)

Gamma – Gamma factor of Newmark’s method.

Beta – Beta factor of Newmark’s method.

DeltaT – Time increment.

TotalTime – Total time for which transient analysis is carried out.

DispInit – Initial displacement (t=0.0 sec).

VelocityInit – Initial velocity (t=0.0 sec).

Alpha1 – Constant used in proportional damping matrix.

Alpha2 – Constant used in proportional damping matrix.

CARD 16: – (Note: skip this card if type of analysis is eigenvalue)

NodeX – Node where displacements are desired.

XPoint – x-coordinate of point where stresses are printed.

ZPoint – Depth coordinate of location where stresses are printed.
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A.2 Sample Input File

This input file is for Specimen 1, [90/0/90]T Layup. Loads P/2 in Card 14 are

iteratively chosen such that the finite element output indicates structural failure.

CARD 01: 8 3 1431.7 1.45E-4 0

CARD 02: 162.E9 9.7E9 9.7E9 5.9E9 5.9E9 2.0E9 0.3 0.3 0.5

CARD 03: 2.618E9 1.620E9 66.E6 248.E6 66.E6 248.E6 103.E6 103.E6 77.E6 90 0 90 90 0 90

CARD 04: 10 469.42 1.39E-2

CARD 05: 1.056E9 1.114E9 0.379E9 587.9E6 587.9E6 587.9E6 0.25 0.25 0.25

CARD 06: 8.86E6 8.86E6 10.3E6 10.3E6 4.38E6 4.38E6 2.8894E6 2.8894E6 2.8894E6

CARD 07: 1 0.1524 0.025811 20

CARD 09: 0.0 0.0 0.1524

CARD 10: 0.0 1e10 0.0

CARD 11: 0.001 0.01 0.5 0

CARD 12: 0 2 2

CARD 13: 1 101 0.0 0.0

CARD 14: 6 0.0 -6.64E2

CARD 14: 16 0.0 -6.64E2

CARD 16: 11 0.01 0.001
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Appendix B. Additional Photographs of Sandwich Beam Failure

Presented in this appendix are additional photographs of the specimens taken after the

sandwich beams exhibited structural failure.
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Figure B.1 Sandwich Beam Failure (5×) (Specimen 4)

Figure B.2 Sandwich Beam Failure (10×) (Specimen 4)
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Figure B.3 Sandwich Beam Failure (5×) (Specimen 6)

Figure B.4 Sandwich Beam Failure (10×) (Specimen 6)
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Figure B.5 Sandwich Beam Failure (5×) (Specimen 7)

Figure B.6 Sandwich Beam Failure (5×) (Specimen 8)
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